电码防伪技术特点:
1、技术的不可伪造性:电码防伪标识浓缩了多项高科技手段,具有*特的防伪机理。即便是伪造者掌握了该防伪标识的制造方法,却无法伪造出与真品相对应的正确防伪密码,更无法将伪造的密码信息送存于全国中心数据库中。因此从根本上杜绝了大批量工业化造假行为。电码防伪技术特点:电码防伪技术特点:
2、防伪标识的一性:具有一性,即一件产品一个编码,由计算机随机加密生成,绝无重复。
3、密码的保密性:每个防伪码都是隐藏在电码防伪标签中,只有破坏性刮掉涂层或揭开标识物,才能看到密码。当密码被**查询后,中心数据库自动记录下查询的时间,并将该件产品的密码档案自动消除从而排除了防伪密码重复使用的可能性。
4、鉴别的简易性:消费者只需拨打电话或上网查询,便可知真伪。
销量持续增长的汽车市场在2009年后突然萎缩,松下蓄电池电动汽车的生产开始越来越注重混合动力电动汽车及纯电动汽车这种“绿色”产业。用早已使用的点火、起动、照明(SLl)电池安装一个起停系统,就要求电池有较高的充电接受与比能,通过提供“常备”的SLI电池更好的起动性能,从而限制COz的排放,但这种起停系统仍不能满足**对排放的要求。为了接近这一可接受的成本水平,更为强大的功能由引擎转换到电池,这在真正意义上要求电池有更大的功与能稳定地输出,还要求电池能在高率充/放部分荷电的状态(HRPSoC)下使用。在这一情况下使用的铅酸电池寿命会比较短,迫使电动车制造商选择镍氢电池与锂离子电池。为了保持与发扬铅酸电池强劲的市场优势,需要有新的能、功以及**命等性能的电池问世。
SLI电池的替换趋势仍在增长,装有起停系统的车辆能获得减少3%一8%C02排放的额外收益。 “中混”与“全混”电动车减排C02更多(15%一40%)。插电式或“全混”电动车更加“绿色”环保。据预测:可减排10%一20%COz的“微混”电动车的销量增长会一直持续至2020—2025年,相反,“全混”或插电式混合电动车会选用镍氢电池与锂离子电池。“微混”电动车仍以铅酸电池为主。这为高性能铅酸电池提供了**的巨大商机,在近30年,先进铅酸电池能否作为电动汽车的主要能源,关键是铅酸电池必须具有**命和高哇能。
几次先进铅酸电池联盟会议都讨论过铅酸电池寿命短的原因与失效机理,以及解决该问题的有效工业方法,其中较重要的是近十年来应用炭添加剂加入负极来阻止电池负极在HRPSoC工况下引起的硫酸盐化。古河(Furu Kawa)和东宾(East penn)生产的炭基高容量负极辅板配合正极的**级电池,已经出现,在亚洲、欧洲及美国的一些生产厂家,将高表面积炭粉加入负极活物质里,虽然寿命是增长了,但其他性能参数却未有改变。铅酸电池可用的活物质只是理论容量的35%一40%,这就是为何相对比容量及比功低的主要原因。在先进铅酸电池里,由于增大了活物质的利用率,从而为将比能、比功(W.h/kg,W/kg)增大2~3倍提供了很大的可能性。这里,提供一个成功的例子,即选择有利的板栅和应用双较设计来提高比能和比功,参数如表4—1所列。
将炭添加剂添加至先进铅酸电池中,松下蓄电池不**于添加到负极活物质组成里,而且,先进形式的炭能代替板栅金属铅,炭板栅与合适的铅膏结合将具有相当优秀的循环稳定性与耐久性,可与镍氢电池及锂离子电池相媲美,如图4—1所示。
铅酸电池用于混合动力电动车有容量早衰现象,另外,腐蚀与维护要增加额外的成本。主要原因是作为能源的电池不是浮充而是部分荷电状态下高率充/放电使用模式,负极板容易硫酸盐化而引起容量衰减与寿命缩短。但可以肯定的是,铅酸电池性能正在稳定地提高,许多新设计都能满足较优挑战性的现代使用要求,进一步的研究将仍然能够保持铅酸电池是较**的化学电源。
1、放电测试,目前国内是用10小时率来做放电测试,检测蓄电池容量,比如300AH蓄电池,就用30A电流恒流放电,每隔1小时抄一遍单体电池电压,10小时后低于1.80V的蓄电池认定为容量不足。不过按照电力标准,**次放电实验放出95%的容量属于合格,也就是说放到9小时30
分的时候就可以停了。
2、直流屏上接着负载,比如站公用设备、高低压开关设备等使用直流电的设备。在站用变停电后,直流屏瞬间转为蓄电池供电,直到电力回复正常,蓄电池就转入充电状态。 更换电池组:一般直流屏都有备份,2组蓄电池互相备份,你将其中一组蓄电池断开,用另外一组供2台直流屏,这时候这组蓄电池就可以更换了,更换前先把电池巡检全断开,避免有小火花,然后再把蓄电池组中任意一个链接条断开,这样就安全了。 另外变电站要求安全运行,不考虑成本,所以变电站内为了保持电池的电量,把电池长期处于浮充电状态,这种充电为过充电,使电池失水严重。电解液的浓度上升,使得较板硫化,电池的内阻就增大,容量下降。 定期的给电池补水,就能保持电池的容量..
松下蓄电池发热量与电解液量联系较小,如是密封松下电池电解液量较少时内阻增大,也会致使电池升温而且充电时端电压很高。
电池变老、电解液干枯、内部有短路等相同也会形成发热。充电器不能在充电后期恒压,以致形成电池电压跨越答应值,温度会升高,严峻的会鼓胀,寿数完结。
松下蓄电池在充电过程中,电能一部分转变为化学能,还用一部分转变为热能和其他能量。
充电电池发热归于正常景象,可是温度较高时就应及时检查充电电流是过大或许电池内部发作短路等。使用中,尽量不横放或倒放,防止松下蓄电池内部一时大量产气不能顺利从放气阀排出,尤其充电时更是如此,不然也许致使外壳爆裂。
松下蓄电池是个单个的“原松下电池”构成,每一个原松下电池电压大概2伏,原松下电池串联起来就形成了电压较高的松下电池,一个12伏的松下电池由6个原松下电池构成,24 伏的松下电池由12个原松下电池构成等等。UPS的松下电池充电时,每个串联起来的原松下电池都被充电。 原松下电池功能略微不一样就会致使有些原松下电池充电电压比其他原松下电池高,这部分松下电池就会提早老化。只需串联起来的某一个原松下蓄电池功能降低,则全部松下电池的功能就将相同降低。实验证实松下蓄电池寿数和串联的原松下电池数量有关,松下电池电压就越高,老化的就越快。
判别蓄电池的好坏判断有**的蓄电池测量仪,但是一般的用户很少有这种仪器,都只有一只万用表.下面几点维修中判断蓄电池好坏的几点总结,以供参考.
1、从外观判断:观察外观有无变形、凸出、漏液、破裂炸开、烧焦、螺丝连接处有无氧化物渗出等。
2、 带载测量:若外观无异常,UPS工作于电池模式下,带一定量的负载,若放电时间明显短于正常放电时间,充电8小时以后,乃不能恢复正常的备用时间,判定电池老化。
3、 用万用表测量:
A 、电池放电模式下测量:测量电池组中各个电池端电压,若其中一个或多个电池端电压显明**或低于标称电压(标称电压12V/节),判断电池老化。
B 、 市电模式下测量:电池组中各个电池端的充电电压,若其中一个或多个电池的充电电压显明**或低于其他电压,判定电池老化。
C、 测电池组的总电压:电池组总电压明显低于标称值(以C1K电池组标称值是36V为例),充电8小时后乃不能恢复到正常值,即使恢复到正常值,放电时间达不到正常放电时间,判定电池老化。
D、电池开机测量:UPS不开机,也不要接市电,先用万用表测量电池组总电压,以C1K为例,此时电压可能在36V-40V之间,属于正常值,表笔不要离开,一直盯住万用表的指示,然后接开机键,若此时电池总电压马上降至30V以下乃至十几伏,UPS马上自动关机,关机后电压立即恢复到原有值。判定电池老化。